
JOURNAL OF COMPUTATIONAL PHYSICS 35, 291-318 (1980) 

A Numerical Model for Laser Targets 

J. P. CHRISTIANSEN 

Euratotni UKAEA Fusion Associafion, Culham Laboratory, Abingdon, Oxon. OX14 3DB, United Kingdom 

AND 

N. K. WINSOR 

Naval Research Laboratory, Washington D.C. 

Received December 20, 1978; revised July 18, 1979 

A two-dimensional, three-temperature MHD model for numerical calculations of the 
dynamics of laser targets is described. Time-dependent atomic physics, transport of con- 
tinuum radiation by a diffusion approximation, and self-generated magnetic fields are 
included in the description. Various numerical methods for solving the finite-difference 
equations are outlined and compared. Results from these calculations show that magnetic 
source terms and thermal conductivity terms must be treated with great care if proper 
energy balance is to be maintained between the magnetic field and the electrons. 

1. INTRODUCTION 

In the last few years there has been a considerable effort in the numerical modeling 
of laser-produced plasmas. Such numerical calculations of laser-produced plasmas 
are essential in feasibility studies of laser fusion [I] and X-ray sources [2]. Several 
computer codes have been described by other authors: one-dimensional compression 
and transport codes [3-51, two-dimensional transport [6,7], and compression codes 
[8,9]. The physical models used by these codes emphasize some aspects of the target 
physics, while many other aspects may be omitted depending on the specific 
application of the code. Consequently the numerical methods employed by each of 
these laser target codes differ substantially so that a straightforward comparison 
between these codes is difficult. 

In this paper we describe the details of a laser-target model and present results from 
calculations with this model. In the calculations various numerical methods have been 
tried. We discuss our experience with these methods. The model described in this 
paper is used in a code named CASTOR [IO]. It is generally similar to the models 
used in [6, 7, 1 I]. Certain parts of the physics are simplified or omitted as outlined in 
the following. The equations used are presented in sections 2-4. Sections 5-10 and the 
Appendix describe various numerical methods and their performance. Results from 
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calculations with the code are shown in Section 11 and comparisons are made between 
the numerical methods tried. 

The purpose of the CASTOR code is to study the basic plasma properties of an 
expanding laser-produced plasma with’an emphasis on atomic physics, radiation 
emission, transport of thermal and radiation energy, generation of magnetic fields, 
and their effects upon the plasma. In this respect the code resembles the codes of 
[6, 71. Two-dimensional cylinder geometry (r, z) is assumed as illustrated in Fig. 1. 
The laser target is assumed to be a single element of moderate atomic Z. The present 
studies are for carbon (Z -= 6). The state of the target can be obtained from either 
perfect gas laws, a coronal equilibrium model [12], or a time-dependent ionization 
recombination model [13]. The laser pulse is characterized by the wavelength X, , the 
available pulse energy EL , and the power illumination profile P,(r, t) where t denotes 
time. A straight-line approximation is used such that the laser beam travels parallel 
to the z-axis. The plasma produced by the laser is described via the set of MHD 
equations derived by Braginskii [14] in the variables p (mass density), pu (momentum, 
E (energy density), B (magnetic field), T, (electron temperature), and T+ (ion tempera- 
ture). The continuum radiation field is described via a radiation temperature T, , 
while the emitted line radiation is purely calculated from the equation of state as a 
loss mechanjsm. 

The MH D equations are solved on an Eulerian grid using the flux-corrected 
transport method of Boris and Book [16]. Although the grid can move as a result of a 
dynamic rezoning technique similar to that of [17], the grid lines remain orthogonal. 
Large-scale hydrodynamics, e.g., compression, will probably not be treated as well by 
our approach as by a full Lagrangian description like that of [S]. The grid size is 
0 < I’ c R, and z1 < z < zt . 
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FIG. 1. Schematic laser target model showing (r, z) cylinder geometry. 
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The fundamental philosophy behind our numerical treatment of the equations 
involved is the division of the physical effects into two categories. (1) entropy genera- 
ting processes and (II) adiabatic processes. This division is reflected in the calculation 
cycle which is split into two distinct stages. The transport equations (20)-(22) and (27) 
are written so that the left-hand sides represent terms of stage II, while terms on the 
right-hand sides are treated during stage I. All quantities are expressed in SI units, 
though temperatures may be quoted in eV. 

2. EQUATIONS OF STATE 

The target plasma consists of partly ionized ions of density ni , mass number M, and 
free electrons of density n, . The fractional population density of j times ionized 
atoms ish , and averages are denoted as follows: 

indicating a weighted average of z,L over all ionization stages. The vector f = (f. , 
f,...,f’) obeys the equation [13] 

af 
,,+(U.V)f=A.f, (2) 

where the matrix A contains the ionization and recombination rates and u is the 
velocity defined in Section 4. Electrical neutrality of the plasma, 

n, = (2) ni , (3) 

is assumed and all ion states have the same temperature Ti . The internal energy is 

E = #nik(Tt + <z> T,) + (Ed ni , (4) 

where (E,) is the energy required to form a mean ionization level (z). From (4) the 
specific heats are obtained, 

C,i = i nik, 
3 K-k> C,, = 2 n,k -I ni T, 

and the plasma pressure, 

(5) 

(6) p = n,kTi + n,kT, = pi + pe . 



294 CHRISTIANSEN AND WINSOR 

3. EMISSION OF RADIATION 

The treatment of radiation arising from bound-bound (bb), free-bound (fb), and 
free-free (ff) transitions is simplified as follows. The radiation rates are written as 

Pbb = CbbT~1’2ni2(Z)(e-6z), (7) 

Pfb = CoT~“n,“(z)(z28,>, (8) 

Pff = ~CoT,““ni2(z)(z2), (9) 

where 6, = (E, - E,)/kTe is the normalized energy gap between the ground state and 
state z0 . The expressions for the numerical constants Cbb and C, can be found in 
[12, 131. 

A fraction 1 - (n,/n,L)3 of the line radiation is assumed to escape the plasma 
for n, -=c neL , where ncL is a density chosen below the solid density (typically 
neL is l&20 % of the solid density). For n, > n,, the line radiation is assumed to be 
reabsorbed. 

Transport of continuum radiation energy occurs via a diffusion approximation 
similar to that of [5]. In terms of the radiation energy intensity cR = aTR4 we solve 
U81 

&R -I= 
at --V*FR+SR. (10) 

where the radiative flux FR is of the form 

FR = -KRVER (11) 

and SR the transfer rate of energy between the electrons and the radiation field. The 
diffusivity used is (c denotes the speed of light) 

4c 
KR = $I& ’ (12) 

where p is the mass density and KR is the opacity (e.g., Kramers opacity [19]). SR is the 
difference between emission by the electrons of radiation with a Planckian intensity 

(13) 

and reabsorption of the local radiation field (inverse Bremsstrahlung) with a Planck 
distribution B, (r,). SR is obtained after an integration over all frequencies and for 
computational purposes [5] expressed in the form 

SR = f (pff - Pfh)(T, - TR) G(TR/T,). (14) z 

where G(TR/T,) is given in [5]. 
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In optically thin regions, where A, = l/p& > R, , S, does not enter (10) but 
Prr + Pfb is included as radiation loss in the electron energy equation. The total 
emission from the plasma comprises the contribution from optically thin regions 

Y(~R > &) = 27~ f I" (Pff + hb) r dr dz, (15) 

and the radiation leaving the plasma surface, where TR is fixed at Troom 

(16) 

The spectral distribution of the emitted XUV radiation Y is given by (13). 

4. MHD EQUATIONS 

The MHD equations solved are those derived by Braginskii [14]. Ions and electrons 
are treated as one fluid of mass density 

p = n&fm, f n,m, , (17) 

m, and m, being the proton and electron rest masses, and A4 the atomic mass of the 
ions. The fluid moves with a velocity 

(18) 

The electrical current density is 

J = i V x B s -en,UJ (19) 

which defines the “current” velocity uJ . The equations of mass and momentum con- 
servation are 

~+0.,“=0, (20) 

$+v.puu=-vp -j-J x B+V,;F,, (21) 

where the laser flux FL is in the z-direction (V, = a/az). The equation for the total 
internal energy 

+7.eu+pV.u=- v~F-v~FL--SR--Pb~+E.J (22) 
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is supplemented by an ion energy equation (Q = C,,T,) 

IYE. 
-.L 

af 
+v.~~u+p~v.u=-V.F~+K. (23) 

In (22) F = F, + Fi is the total thermal flux including the therm0 electric flux and 

F, = --K_~. VT, - + p . J, 

Fi = --E+ ’ VTi , (25) 

the transport tensors being given in [14]; &b is the line radiation loss and SR is already 
given. The energy exchange rate between ions and electrons K has the form [14,20] 

K = ; n,k 2, (T,> - TJ. (26) 

The transfer rate of energy E . J between the magnetic field and the electrons is 
calculated from 

3B --VxuxB==-VxE, at (27) 

where the electric field is [14] 

E=g.J+Es, 

E,=-iG 
en, 

V,l,-;@VT&-&J xB. 
P 

As shown in [2, 6, 15, 211 asymmetries in the laser-illumination profile can produce a 
magnetic field (see Fig. 1) via the first two terms in (29). In (r, z) cylinder geometry 
this field becomes B = (0, B. , 0) so that (27) reduces to a scalar equation. 

The laser light incident on the target has a flux F,,‘- = Fii-(r, z = z1 , t) and absorp- 
tion occurs via inverse Bremsstrahlung [22] at electron densities below the critical 
density 

The classical absorption coefficient cx is given in [22] and written in the form 

c\: = (27rm,)112 e2c (z) 5” Infl 
E ksjz 

-22 ) 
XL2 (I - 5)“” T;j2 0 

(31) 

where ,!J = q&r, . The flux reaching the critical depth z, at which n, = n, is 
_I 

F, = F,+e- 
s 

-’ N dz = Fo+(l - A,). (32) 
21 
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F, can be split into two parts: A,F, deposited at z, and a reflected flux (1 - A,) F, . 
The flux reflected by the plasma is 

F,- = F,y (1 - A,)(1 - A,)? 

5. TIME SPLITTING OF DIFFUSION AND HYDRODYNAMICS 

The principal variables p, pu, c, T, , Ti , T, , and B are all known at the same points 
on an orthogonal (r, z) mesh shown in Fig. 2. The mesh is of dimensions N, x N, and 
indices (i,j) refer to an (r, z) position. To make the notation and in particular the sub- 
scripts as compact as possible we adopt in the following a notation for referring to 
mesh points as is illustrated in Fig. 2. Quantities Q at point (i,,j) are either referred to 
as Q or QOeO ; Q(i + +,j) becomes Q+,” ; Q(i + 1, j - 4) becomes Q++ and so on 
(see Fig. 2). The mesh spacings are 

Ar = r+ - Y_ , Ar, = r++ - r, 

and similarly for AZ and AZ, . 

i 

-2 
1 2 3 i Nz 

I  
i+l 

I 
I I 

I 
I 

i+$ --.-----,----(c---~-------- 
I I 
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i I 
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i-h I --- ----t---- 4c I ---I- -- --- 
I I 

i-l I 1 I .' 

j-1 i-b j j*l$ j.1 

FIG. 2. The calculation mesh of N, x N, points is shown above. The dots indicate those neigh- 
bouring points involved in the finite difference equations for point (i,i). Displacements in the positive 
and negative r, z directions of half a cell width are represented by + and - subscripts, respectively; 
similarly displacements of a full cell width, by + + and - -, subscripts. Thus a quantity Q at 

.* 1 point (I,] + p) becomes Q,,,, , at point (i - l,i + l)Q--,++ and so on. 
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One cycle in the calculation consists of integrating Eqs. (2), (IO), (20)-(23), and (27), 
one step At forward in time. The cycle is split into two parts as mentioned earlier so 
that the time derivatives are approximated as follows: 

(33) 

Subscript I refers to the changes caused by the terms on the RHS of the equations; 
stage I is the diffusion stage. Subscript II refers to the changes caused by the terms on 
the LHS of the transport equations; stage II is the hydrodynamic stage. Equation (33) 
implies an overall first order accuracy with respect to the step length At = tn+-l - tn. 
Superscripts n + 1 and n refer to the value of a quantity at times P-l-l and P. 

6. THE Two STAGES OF CALCULATION 

6. I. The Hydrodynamic Calculation 

The second stage of the calculation cycle solves equations (20)-(22) and (27) in the 
form 

AQ 
i 1 z + 42 + 42 + HQ = 0, II (34) 

where Q denotes p, pu, E, and B, respectively. The advection operators on a cylindrical 
mesh are (see Fig. 2) 

(AzQ)o,o = z++ 1 z~_ bzQ>o.,+ - <uzQ)o.--1. (36) 

Equation (34) is solved by the FCT algorithms of Boris and Book [16] and a splitting 
in r and z is employed 

(37) 

For each of the sweeps in the r or z directions a predictor-corrector scheme is used. 
Equation (34) is first integrated explicitly over a step length At/2, then U, , U, , and the 
source terms H{Q>, e.g. Vp, J x B, are evaluated. These time-centered values are 
then used to advance Eq. (34) a full step length At. 

The FCT algorithms can advance @ (at step n) defined at a mesh (r”, zn) to eni-1 at 
(Pi-l, zn-i-l). The dynamic rezoning technique used in our model is that described in 
[17] such that the meshes Pi-l and zn~tl are determined from rR, zn, and p” at the end of 
the previous cycle. 
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6.2. The Diffusion Stage 

Equation (2) is solved by the TRIP algorithm described in [13] and will not be 
dealt with any further. The equations (lo), (22), (23), and (27) for T, , Ti , TR , and B, 
respectively, can all be written in the compact form 

c, aQj __ = Dj + DA? + G,j + G,j + Aj + Sj ) 3 at (38) 

where Qj denotes either T, , Ti , TR , or B. In cylinder geometry these terms are for 
Qj = T, > 

3 W,) C, = Cv, = 2 n,k + ni a~, , (394 

Pb) 

(39c) 

VW 

a 
S,=-P,,+E.J--FL 

Further A, = -A, - AR (see below). For Qj = Ti we have 

Ci = +nik (404 
GLi = G, = Si zc 0 W9-W) 

Ai = $nekWei(Te - Ti) (4%) 

and Di , DAi are obtained from (39b, c) by changing subscript e to i and changing 
K,, to -Kd . The transport coefficients in (40 de) are unimportant at all T and B for 
moderate -2 species. The source term is neglected because radiation, ohmic heating 
and inverse Bremsstrahlung all deposit energy predominantly in the electrons. For 
Q, = TR we have 

C, = 4aTR3, (414 
DAR = GIR = G,, = S, = 0, (41b)-(41e) 

AR = $&dT, - TR), (41f) 

and DR is given by (39b) changing subscript e to R. For Qj = B the expressions are 
and 

Cb = 1, Wa) 

(42b) 
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(42~) 

(42e) 

and 
Ab = 0. 

The terms (39)-(42) show how the quantities T, , Ti , T, , and B are coupled to each 
other via various physical mechanisms each with a characteristic time scale. In an 
expanding laser-produced plasma (see Fig. 1) there will be a significant variation (i.e., 
many orders of magnitude) of the variables Qj as well as the coefficients K_ , p, , etc. 
For example, if the density IZ, in the corona is 1O-6 times n, in the solid part of the 
target the coefficients scaling as np2 will vary 12 orders of magnitude. On the calcula- 
tion mesh covering both the corona and the solid this naturally implies that the main 
variables Qj will be strongly coupled in some regions and completely decoupled in 
other regions. Such a feature should be reflected in the numerical treatment. 

In advancing the main variables Q (=QJ from step PZ to step n + I in stage I of the 
calculation, we write the left-hand side of (38) as (subscriptj dropped) 

where 

showing that m separate steps may be involved in the integration of Q. All coefficients 
K, /I, v, w, and C are evaluated at step n so that their superscript n may be dropped. 
The right-hand sides of Eqs. (38) for Q could be expressed in terms of Qn’ l only, 
except for the quadratic terms (39d and (39e) for which a choice between T, and B 
being Qniml should be made. If all the terms (39)-(42) were expressed in terms of 
Qn+l, this would correspond to a fully implicit treatment which retains all the coupling 
terms. Foregoing any discussions about the numerical stability of such a scheme one 
would intuitively feel that this numerical method would give less rise to trouble than 
other methods (see for example the discussions in [23, 241). Indeed this method is used 
in one-dimensional Tokamak transport codes [25] which solve four to six coupled 
equations containing mostly diffusion terms and the article by Hogan [25] reviews the 
methods used in these MHD transport codes. 

This approach has however not been pursued for several reasons: consider the set 
of equations which result from the finite differencing of the terms (39)-(42) using a 
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nine-point difference operator. On a mesh (see Fig. 2) of M = N,.N, points the set of 
equations can be written in the form 

aQ =b. - (4) 

Q and b are vectors of length 4M, while a is a nonsymmetric 4M x 4M matrix with 
31 bands. Contributions from D and A to a are symmetric, while contributions from 
D, , G_ , G, , and S can at best be made amisymmetric. To store elements of a would 
require at least 4 x 31M locations, probably twice that amount to account for 
working space. Because of the large variations in the coupling terms the convergence 
rates during the solution of (44) will be different for different parts of Q, e.g., the Ti 
part of Q will converge much more rapidly than the T, part. Therefore, the solution 
of (44) would be very time-consuming. In particular, a small local region of a few 
mesh points could slow down the convergence rate and thus hold up the progress of 
the physics elsewhere. Furthermore Eqs. (44) do not conserve energy exactly [26] as 
the transfer rate of energyE . J can only be evaluated after the equation for B has been 
solved. 

Thus for reasons of storage limitations, computational speed, and accuracy (energy 
conservation) we solve Eqs. (38) separately for each quantity. To circumvent the 
difficulties associated with some of the coupling terms, we treat these by the fractional 
step method outlined above, such that more than one step, i.e., nz separate steps (see 
Eq. (43)), is involved in the integration of Q. If no magnetic fields are present, the 
D, , G, , and G, terms of (38) vanish and no mixed derivatives are present. The 
resulting set of equations is solved by standard methods (Section 8). This completes 
one part of the diffusion stage. In the other part we deal with those terms which 
depend on the magnetic field. During the development of our laser-target model, these 
terms gave rise to numerical problems, as was also found by other authors [27]. The 
next section describes the various numerical methods which have been tried during 
the development of our laser target model and at the end of the section we summarize 
the method of solution. 

7. METHOD OF SOLUTION 

Magnetic fields are generated in laser-produced plasmas where the asymmetries are 
largest. This usually occurs at densities near the critical density [2, 21, 281. The 
magnetic fields will grow and remain in regions of high conductivity, i.e., the hot 
corona, but quickly diffuse through the high-density resistive regions. The most 
important effect of the fields is on the thermal transfer of heat. The electron thermal 
flux will change most dramatically. As shown in [28] there may be parts of the plasma 
region where the terms G, , G, , and Sb can generate thermal-magnetic waves, i.e., 
the coupling terms of (38) will admit not only diffusive solutions but also wave 
solutions. This property has undesirable effects on the numerical calculations if the 
terh D,, , Glb , G,,,, , and S,, are treated explicitly. The best remedy is to maintain 



302 CHRISTIANSEN AND WINSOR 

an accurate energy balance between the electrons and the magnetic field, as we shall 
see below. Early calculations with our model would either come to a halt or produce 
meaningless results, e.g., negative values of T, . Three problems arise in the treatment 
of these terms. These problems will first be discussed generally in this section, then in 
more detail in the Appendix. The difficulties fall in three areas: (i) spatial differencing; 
(ii) temporal differencing; and (iii) evaluation of E . J. 

The mixed derivatives can be treated in numerous ways (see for example the discus- 
sions in [23,29]). There may be some temptation to reduce D,, to the form 

(45) 

and similarly for DAb , G, , and G, . In (45) the r and z derivatives could then be 
differenced in a straightforward manner either explicitly or implicitly. The differen- 
cing is however not flux conservative and will generate or annihilate electron energy 
and or magnetic flux locally. Therefore the flux-conservative forms (39)-(42) should 
be used and this was found to be especially important for (42f), which can often be 
seen as written in the form (45), i.e., Sb N Vn, x VT, . 

The simplest way of temporally differencing the terms D, , G, , G, , and S, is to 
employ explicit differences, i.e., 

D,, = D,eU’en), 

and similarly for the other terms. Explicit differencing will however cause severe 
restrictions on the step length dt for the following reason. From (39b)-(39e) and 
(42b)-(42e) we notice that the cross derivatives can be cast in the symbolic form, e.g., 

D, = C 1 u, x VQ / , 

where VQ symbolically represents the operation V or V x on either T, or B as 
appropriate. For the D, terms u, becomes the gradient of P~U, , piui , uliuA in the 
strong field limit W,,T > 1; U, , ui , and uA are the electron thermal ion thermal and 
Alfven velocities, respectively, and p. , pi, uCe , and wCi are the Larmor radii and 
frequencies. Therefore if (46) is used, the step length dt should be subject to a stability 
condition [30] 

At < h/u,, (47) 

which is similar to the limit imposed by the advection stage of the calculation (Section 
5) when U, is replaced by the sound speed u, . Since U, > 24, can easily arise, (47) 
becomes a severe restriction; to overcome this a fractional steps method [30] was tried 
for (43) and (46) and we solved 

Qu = Q”--llm + ; dt & Z (Q“), (48) 
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in which C denotes the sum D, + G, + G, . The number ‘m was determined so as to 
satisfy (47) 

UP. m>---- . 
( > us max 

This restriction has proved prohibitively expensive on computing time; so did a 
“relaxed” condition allowing Q to vary 01”/, per step, i.e., 

m > g (Z (Qn>)max . 

Although (48) was found not to become unstable, the limitation (49) would often be 
caused by a small localized low-density region which would hold up the progress of 
the solution elsewhere. 

We have tried various combinations of implicit and explicit time differencing of the 
terms D, , GI , and G, but we have found it necessary to treat these terms implicitly 
as well as the electric field Es (Eq. (29)) in the term E . J of (39f). It is the implicit 
treatment ofE8(T,) 9 J which was referred to as “a proper energy balance between the 
electrons and the magnetic field” earlier in this section (see [26]). Although this treat- 
ment complicates the finite differencing as well as the coding, it substantially improves 
the accuracy and progress of the calculation. Before we discuss some remaining 
problems we can summarize the present method of solution as follows: 

and 

& c,,(T,” - T,Y-llm) = Ze (Teu) + E,(T,“) . JU-““, (504 

g (P - B-l/“) = ;r;b (T,“) + S,(T,@), (WI 

-$ Coi(Tiu - T;-‘lrn) = DJTi “). (504 

As before Z denotes the sum D, + G, + G, and superscript p indicates that two 
stages are present: the solutions to (50) are obtained by the ADI method using the 
differencing described by Marx and Killeen [23] and Lindemuth and Killeen [29].l 
During the r - sweep p = n + l/m (m defined below) the correct transfer rate E, * J 
after the integration of (50b) is [26] 

E,(P) * :(J” + J“-+$ 

which is not the rate of (5Oa). The difference, 

E,(P) * &(J” - Jv+=), (51b) 

1 In fact our approach resembles that of [29] since all variables which can be treated implicitly 
are so treated. 
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is evaluated and added to the RHS of (5Oa) during the z-sweep for which p = n f 
2jm. After the z-sweep a new difference (51 b) is evaluated and included in S, for part 2. 

In part 2 of the diffusion stage we solve four equations of the type (38) i.e., 

(l/At) Cj(Qj“ - Qy-"ln) = D,(Q") + Aj + S, , (52) 

where Sj for the electrons is given by (39f) without theE, J term. Equation (52) can be 
solved either by a splitting method [30] or by the ICCG method described by Kershaw 
[31] together with its application to the Livermore laser code LASNEX [8]. If a 
splitting method is used p = n i 3/m and n T 4/m during the r- and z-sweeps of (52) 
and m = 4. If the ICCG method is used, m = 3 and p = n -i- 3/m in (52). Equation 
(52) is solved first for B, then for T, , Ti , and T,,. such that the correct transfer rate 
(51a) (E, replaced by r) J”) can be evaluated after the diffusion of B. 

The division of (38) into the two parts (50) and (52) may seem complicated. How- 
ever, it ensures that the electric field source is solved for implicitly while at the same 
time energy is conserved exactly [26]. For regions where the RHS terms of (50) 
dominate those of (52) the solution is obtained almost fully implicitly, i.e., OQ of (50) 
is much larger than OQ of (52); it was precisely these regions which gave rise to 
problems when other methods were used. 

8. PHYSICAL AND NUMERICAL WAVES 

To see why an implicit treatment ofE . J in (39f) is used it is illuminating to consider 
a thermal magnetic wave (see for example the treatment by Pert [28]). Thermal 
magnetic waves may arise from the D, , G, , G, , and S,, terms of (38) and for sim- 
plicity we look only at the electron pressure contribution toE (Eq. (29)) assuming n to 
vary in z. This reduces Eq. (38) to 

r 
C,. s;z -== E,J, , (53) 

aB a _ == - E %t ar ” 
where 

kT, % 
EZ = --ezlnn,, 

The frequency response from the plasma to perturbations 

T, = Tc, - T,J,,(w) e’“‘, B = B, + B,J,(ar) eiwt, 

where J,, and Jr are the Bessel functions, is given by 

(56) 
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We have set C, = &z,k and a In n,/2z = i. Inserting typical values in (56) (see 
Section 11) we find for T, M 1 keV and (y. = l/dr that w varies from 5 x lo9 to 
5 x 1012 see-l depending on n, . Such a frequency represents a short time scale 
compared with a laser pulse length of 5 x 1O-s sec. 

In the numerical solution of (53)-(55) the E,J, term may be represented as either 
(see Fig. 2) 

or 

(GJz)o,o = - (& l),.,; (Jz+.o + Jz-.oh 

(574 

If Eq. (53) is solved explicitly as regards T, , then the amplification factor of a mode 
Tl N exp(ikjd) is 

A = 1 - 2s(l + cos kd) or A=l-4s (584, (5W 

using (57a) and (57b), respectively; the quantity 

is assumed constant in r. Therefore if a disturbance is excited during a calculation the 
time-step control 

Atn’W < 6 Qn 
Q n+l _ Qn max Atn+l’z 

will enforce values satisfying (w max is the maximum value of (56)) 

2rr 

This was found to cause problems as mentioned earlier. 
If Eq. (53) is solved implicitly as regards T, (AD1 method, see Appendix A3), then 

the amplification factors of a mode during the r-sweep and z-sweep are for (57a) and 
(57b), respectively 

A, = 1 
1 + ~(1 + cos kA) ’ 

A = 1 -scoskA 
* 1+s ’ 

A, = A, = & . 
/ 

The amplification factors (58) and (59) have here zero imaginary parts; in general A 
is complex because s is not constant so that modes propagate. While (59b) damps all 
modes it is interesting to note that (59a) only damps modes with kA f rr (wavelength 
of two cells). The more natural choice (57a) of defining E, and J, at the same point 

5S1/35/3-2 
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(+, 0) using T+,, = iU’++.o + T,,,) does not eliminate the shortest wavelengths 
which the calculation mesh can accommodate. In general these short wavelength 
modes may grow because of the nonlinear coupling between T and B (e.g., (53)-(55)). 
Although such modes are not at all well represented in a calculation anyway [24, 301 
and should be eliminated as they represent “numerical waves” because of the restric- 
tion k < km,, , they can give rise to problems. The choice (57b) implies a damping of 
these modes and a further damping occurs in part 2 of the diffusion stage. If this 
damping is insufficient additional artificial smoothing can be introduced. 

9. CHOICE OF TRANSPORT COEFFICIENTS 

All the transport coefficients begin with the classical expressions as given in [14, 18, 
201. Additional physical processes can be included via anomalous transport coeffi- 
cients. Several papers on lasser-produced plasmas have discussed this issue. For all 
fluxes F we impose upper limits Fmax via the flux limit model used in [4] 

1 1 I -=-_- 
F Fclass Fmax ’ 

where Fclass is the classical flux usually of the form OIVQ; this expression modifies the 
coefficient 01. The maximum fluxes allowed are the free streaming fluxes -$nukT for 
ion and electron thermal transport and the blackbody flux -uTe4 for radiation 
transport. The maximum transverse electron flux is -neupp,VTC and similarly for the 
ion transverse flux. In the low-density corona region the current densities J - eneUJ 
can give rise to high drift velocities (runaway situations) and an anomalous resistivity 
can be included to maintain uJ < u, 

10. BOUNDARY CONDITIONS 

Because our model is essentially Eulerian the boundaries of the calculation mesh 
do not correspond to real physical boundaries. The choice of boundary conditions is 
therefore to some extent ambiguous. During the development of our model various 
conditions have been tried out especially those concerning the magnetic field. At the 
inner r-boundary, r = 0 cylinder symmetry is used. 

At the outer r-boundary and the z-boundaries, free flow conditions Cp = 0 are 
used together with Vn = 0 and VT = 0. The thermal fluxes are all zero at the bound- 
aries and part of the radiative flux (Eq. (16)) is determined via TR = Troom at the 
boundaries. 

The total electric field parallel to the boundary can be set to zero so that we can 
regard the plasma blowing off the target as surrounded by a flux-conserving sieve 
which lets through plasma but no magnetic flux. Alternatively the current density J 
normal to the boundary can be set to zero and this condition has been used in the 
calculations described in the next section. 
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11. RESULTS 

All calculations discussed here are carried out for a fixed target and laser perfor- 
mance. The target material is carbon and the size is R, = 25Op.m and zg - z1 = 
800 pm. The mesh used is (N, , NZ) = (IO, 40) with initial temperatures of 1 eV. The 
density profile varies initially only with z and increases exponentially from lo-%, to n,? 
over 700 pm (ns is solid density). The laser-illumination profile is assumed Gaussian 
in r and t with half widths 1OO~m and 2.2 nsec, respectively; the wavelength is 
h = 1.06 pm (Nd) and the energy available in the pulse is 18 J. 

We consider the following six calculations labeled 1-6, all of which employ classical 
transport coefficients including the flux limits of Section 9: 

1. Three temperature calculation with no hydrodynamics and no magnetic 
fields. Diffusion by the splitting method. 

2. As 1 but diffusion by the ICCG method. 

3. As 2 but no radiation temperature. 

4. Two-temperature calculation (r, , ri) with hydrodynamics and magnetic 
fields. Diffusion by the ICCG method. E J treated explicitly where E contains only 
the electron pressure. IL), = G, = CL = 0. 

5. As 4 but E . J t;cated implicitly. 

6. As 5 with D, , G, , ard G! treated implicitly. 

Calculations 1-3 look at the differences between the splitting and the ICCG methods 
as well as the effects of radiation transport although these are relatively small for the 
present laser-target setup. Calculations 4-6 study the response from the code when 
magnetic fields are included. 

Two-dimensional codes produce a massive amount of information which could 
easily swell this paper. The following figures show curves which have been chosen to 
bring out the main differences between the results of cases 1-6. Typical temperature 
profiles, see for example [6, 7, 151, are shown for case 2 in Fig. 3; the profiles are taken 
along the axis r = 0 at two different times. Similar profiles with lower values of Tare 
found for r > 0. For all calculations we evaluate the time-space integrated emission 
spectrum 

S(Y) = ft” Y(v) dt, 
0 

where Y(v) is given by (15) and (16). S(v) is a sensitive indicator of the entire time 
history of the temperatures. The spectrum S(Y) has the shape given in Fig. 4 (case 2) 
and the slope corresponds to an “effective” temperature of 600-700 eV. Figure 5 
shows the ratios 

r12 = &(W2(4 

the subscripts referring to the calculation number. There is agreement to within 10 % 
between S, and .S, in the interval 0.9 to 4 keV. At low energies (-400 eV) the splitting 
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10-4 5x10.4 
-z 

[ml 

FIG. 3. Axial temperature profiles for case 2 (ICCG diffusion). Full curves are at t = 0 .4 nsec; 
dashed curves, at t = 8 .O nsec. The same profiles for case 1 look similar except the one for TR. 
The arrow at z = 480 pm indicates position of critical density. 

method predicts about 25 ‘A more radiation than the 1CCG method because the 
former method propagates the electron energy deeper into the solid regions. The 
discrepancy at the high-energy tail originates from the predicted temperatures at those 
few mesh points occupying a small axial region near the critical density. The curve 
representmg r23 shows the change in S(V) due to radiation transport. The enhance- 
ment at low energies (< 300400 eV) is caused by propagation of the radiation field 
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S(v) ~JoulcloK) 

I.- -I 
hv 

103 10‘ (.VI 

FIG. 4. Radiation emission spectrum for case 2. 

102 

FIG. 5. Ratios between emission spectra obtained in cases 1, 2, and 3. @iffusion by splitting, 
ICCG, and ICCG but no radiation temperature, respectively.) 
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10-L 5x10-c 
[ml 

FIG. 6. Axial electron temperature profiles for case 4 (explicit E . J) : x , t = 0.55 nsec; case 5 
(implicit E * J) : ., t = 0.54 nsec; case 6 (implicit E . J and transport) : 0, t = 0,56 nsec. 

into the solid regions followed at later times by a (relatively) small energy transfer to 
the cold electrons. 

The results from calculations 4-6 are shown in Figs. 6 and 7. The time chosen is 
No.5 nsec because calculation 4 could not be carried on much further. Figure 6 
depicting the axial T, profile shows a substantial difference between cases 4 and 5, i.e., 
between explicit and implicit treatment ofE . J. The difference between the calculated 
S,(V) and S,(V) is however quite small (less than 10 %); the snapshot profiles of Fig. 6 
differ because local oscillations of T, are much larger for case 4 than for case 5. The 
same applies to the magnetic field profiles of Fig. 7 shown against z along Y = 100 pm. 
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f- 
rJ 
J \ 4 

FIG. 7. Magnetic field against z at r = lo-* m. Legend as in Fig. 6. 

The inclusion of thermoelectric effects, transverse fluxes, and the Hall term in cal- 
culation 6 shows a small change to T, ; the magnetic field near the critical density is 
however smaller now since E is smaller (see (A2)). 

It is our experience that results from calculations which include magnetic field 
effects should be treated with some care. Snapshot profiles such as those of Figs. 6 
and 7 only become meaningful after some averaging over several time steps has been 
made. To emphasize this point we show in Fig. 8 for case 5, the temporal variation 
d In T, of the axial temperature profile shown in Fig. 6 (full curve); the dashed curve 
displays d In T, at a later time. For both curves we define 

A In T, = 1 Tr+’ - Ten j/T,“. 
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FIG. 8. Instantaneous change of axial electron temperature profiles for case 5. Full curve t = 
0 * 55 nsec. Dashed curve t = 1 * 0 nsec. 

The quantities d In Q, where Q denotes the main variables, control the variation of 
the step length dt whose variation with time is shown for case 5 at every 25 steps in 
Fig. 9; the restriction d In Q < 0.25 has applied to all the calculations. The dashed 
curve in Fig. 9 represents the variation of dt for case 5 when a smoothing algorithm 
(Appendix 6) is applied to T, and B after part 1 of the diffusion stage. 

Several conclusions can be drawn from these studies. When radiation is important, 
an implicit method (e.g., ICCG) should be used to maintain accuracy and to avoid 
lengthy calculations. When magnetic fields become large enough (w,,T > l), a very 
carefully chosen implicit algorithm (Eq. (50)) must be used for the E, . J. term. Even 
then the magnetic effects may display rapid time variations in other physical quanti- 
ties, such as the electron temperature, and the results must be carefully interpreted. 
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FIG. 9. Time variation of step length At for case 5. The separation between successive dots is 
25 steps. The dashed curve shows the increase in At caused by a smoothing algorithm. 
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APPENDIX 

Here we shall briefly explain some of the details behind the numerical treatment of 
each of the terms of Eq. (38). The subscript indexes used are those explained in 
Fig. 2. Superscripts are dropped since it should be clear from Section 7 which value of 
p = n + l/m is being used. 



314 CHRISTIANSEN AND WINSOR 

A.1. The Diffusion Terms 

Five-point differencing is used for the term D and is regarded as sufficiently accurate 
because of the orthogonality of the mesh. The splitting method leads to two sets of 
equations 

-arQ+a,o +- bTQo,o - c~Q--,~ = 4, 
-azQo,++ + b,Qo,o - czQo,--- = 4, 

where, for example, for Q = T, and dv = rdrdz 

b, z CAc + a, t- c, = CAr + At 
t 
r+K+,O $ 

AZ 
~ + r-K-,0 A,.- 3 1 

b, z CAu + a, + c, = CAC + At [rKo,+ g f rKg,- &) , 
1. 

4 = dz = CAvT,,, + &At@ + A). 

For brevity subscripts I and e have been dropped. Similar expressions apply to the 
coefficients a, b, c, and d of the other equations. The ICCG method results in the 
matrix equation (44) with a being a symmetric M x M matrix. The elements of a 
denoted by e (to avoid confusion) are on the diagonal (k, k corresponds to point 0, o> 

ekk = b, + 6, - CAv. 

The off-diagonal elements are 

while 

ek+l,k = -ar, ek-l.k = -%, 

ek.k+l = -az , %.k---l = -czp 

bk = CAvQ,,, + At(S + A). 

Although the splitting and ICCG method can be applied to the variables T, , Ti, 
T, , and B in any combination we have found (not unexpectedly) that the biggest 
difference in the results produced by these methods occurs for the T, and T, equations 
since Di and Db are more diagonally dominant than D, and D, . 

A.2. Transverse Fluxes and Fields 

The D, terms describing heat flow along the isotherms (or the Hall field) are 
differenced in the same way as in [23], e.g., 

JAvD,, = r+K+,OV++.++ - T+,,-- -t To,++ - To,--> 
- r-K-,,(T,,++ - To,-... + T-v,,, - T we,__) 

- %.+(T++,++ f T++,o - T--.++ - T--.0) 

+ rKo,-(T++,O + T+ ,-,- - - T--,, - T--,-J. 
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A.3. Thermoelectric Fields and Fluxes 

The symmetry of the kinetic coefficients /I, and /3, (the Onsager principle) implies 
that 

EB . J - V . qfl = % T,V . (P . J), (‘43) 

where EB = -(k/e) f3 VT, and q8 = -(k/e) T$ . J are the thermoelectric field and 
flux whose curl and divergence are represented bi the G terms. It is desirable to retain 
the identity (A3) when the G terms are differenced. This is however not possible for 
the components of (A3) involving PI as long as B and T, are expressed at the same 
mesh -points. The problem is that ET6 is required at points (0, +) and (0, -), while 
qrS is required at points (+, 0) and (-, 0), and vice versa for the z-components. A 
remedy for the discrepancy between the identity (A3) and the corresponding finite- 
difference expression is to solve that part of (50b) which includes /3L terms on a 
staggered mesh on which B is expressed at the points (-, -), (+, -), (-, +), etc. 
(see Fig. 2). However it is not possible to reapportion both magnetic flux and energy 
from the staggered mesh points to the ordinary mesh points in a conservative fashion. 

The differencing of the G, terms (39d) and (42d) follows [23, 291, while the dif- 
ferencing of the G, terms (39e) and (42e) is the same as for D. In these terms the elec- 
tron temperature is always treated implicitly and the same applies to Sb . The electric 
field is 

E z+,o = Wzo,o + &++,o), 
E zo,o = -W)(io.oTo,o + Plo,o (To.++ - To,--) - ~Ao.o(T++,o-T--,o))~ 

and similarly for E, . The energy transfer rate EJJv as B changes from Bo to B* is 

This rate is split such that 

is taken from cell (0,O) and 

is taken from cell (++, 0) and similarly for EJJo. The average J, is f, = +(JZo + 
J?) WI. 

A.4. Energy Exchange Terms 

The exchange of energy between ions and electrons Ai (Eq. (40g)) and the exchange 
of energy between electrons and the radiation field A, (Eq. (41g)) can occur at very 
rapid rates, i.e., wPi At or w,~ At can vary over many orders of magnitude. The 



316 CHRISTIANSEN AND WINSOR 

numerical treatment is an extension to the method described in [32] and also used in 
[4]. From Eqs. (38) we form 

644) 

where 

LJ = Te - Ti , 

and 

x = Te - T, , 

w = D + D, + G, $ G, + S; 

the X’s involve wsi , wGR , and the reciprocal specific heats. Equation (A4) is solved by 
the exponential relaxation method of [32] and yields the expressions 

<I> = All<eewlt) + A12(e-9 + Bl 

and similarly for (x), A,, , A,, , and BI depend on the 4’s and the initial values 6, , 
and x0 ; the bracketed terms are the correctly averaged values as explained in [32] and 
w1 and w2 are the roots of a quadratic equation with the x’s as coefficients. The ex- 
change terms (40g) and (41g) using the calculated values of ([) and {x) then enter the 
diffusion equations (52) as source terms. 

A.5. The Remaining Source Terms 

The calculation of S, involves three terms (Eq. (39f)) of which Z%b is straightforward. 
The laser deposition term is calculated by 

-;F,- --&,+ - J’,,-) = -& F,,-(I - e-l), 

where Z = SE: oldz and 01 given by Eq. (31). Because of the dependence of a upon 
t = ne/nC it is necessary to consider weak and strong spatial variations in n, separately. 
For weak variations in n, (or 0 we have 

s 
*+ f”(l - <)-l/2 dz = l&2(1 - &-l/2 Liz. 

z- 

For strong variations of 5 we fit two exponential curves to the density profile between 
points (z-- , zO) and (z,, , z++) respectively in order to estimate 5 at the points I- and 
z, . The integration is carried out yielding 

s ‘+ (“(I - &1’2 dz 
z- 

2 1 
= 3 (In & - In fz) ((2 + &;)(I - t1y2 - (2 + 62)(1 - 52m A 
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where & = (&&,) 1/Z and 6, = GL+) li2. The integrations can be carried up to 
& = 1, i.e., the critical density whose coordinate z, is found from the exponential 
fits. Further deposition of energy (see (32)) occurs over an interval of order dz and 
contributes to those two cells whose coordinates are on either side of z, . Reflection of 
light follows the same procedure. 

A.6. Smoothing 

To speed up a calculation a smoothing algorithm can be applied to eliminate short 
wave length disturbances. The algorithm used represents explicit diffusion of a 
quantity Q with a diffusion coefficient 

D = C,ArAz/At if A In Q > C, , 
D==O if A In Q < C, , 

where the constants C, and C, are of order 0.14.2 and A In Q is the relative change in 
Q during part 1 of the diffusion stage. 
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